389 research outputs found

    Temperature crossover of decoherence rates in chaotic and regular bath dynamics

    Get PDF
    The effect of chaotic bath dynamics on the decoherence of a quantum system is examined for the vibrational degrees of freedom of a diatomic molecule in a realistic, constant temperature collisional bath. As an example, the specific case of I2_2 in liquid xenon is examined as a function of temperature, and the results compared with an integrable xenon bath. A crossover in behavior is found: the integrable bath induces more decoherence at low bath temperatures than does the chaotic bath, whereas the opposite is the case at the higher bath temperatures. These results, verifying a conjecture due to Wilkie, shed light on the differing views of the effect of chaotic dynamics on system decoherence.Comment: 7 pages, 3 figure

    Engineering an all-optical route to ultracold molecules in their vibronic ground state

    Full text link
    We propose an improved photoassociation scheme to produce ultracold molecules in their vibronic ground state for the generic case where non-adiabatic effects facilitating transfer to deeply bound levels are absent. Formation of molecules is achieved by short laser pulses in a Raman-like pump-dump process where an additional near-infrared laser field couples the excited state to an auxiliary state. The coupling due to the additional field effectively changes the shape of the excited state potential and allows for efficient population transfer to low-lying vibrational levels of the electronic ground state. Repetition of many pump-dump sequences together with collisional relaxation allows for accumulation of molecules in v=0.Comment: Phys. Rev. A, in pres

    Mode-selective vibrational excitation induced by nonequilibrium transport processes in single-molecule junctions

    Full text link
    In a nanoscale molecular junction at finite bias voltage,the intra-molecular distribution of vibrational energy can strongly deviate from the thermal equilibrium distribution and specific vibrational modes can be selectively excited in a controllable way,regardless of the corresponding mode frequency. This is demonstrated for generic models of asymmetric molecular junctions with localized electronic states, employing a master equation as well as a nonequilibrium Green's function approach. It is shown that the applied bias voltage controls the excitation of specific vibrational modes coupled to these states, by tuning their electronic population,which influences the efficiency of vibrational cooling processes due to energy exchange with the leads.Comment: 12 pages, 4 figures, and Support Informatio

    Advances in decoherence control

    Full text link
    I address the current status of dynamical decoupling techniques in terms of required control resources and feasibility. Based on recent advances in both improving the theoretical design and assessing the control performance for specific noise models, I argue that significant progress may still be possible on the road of implementing decoupling under realistic constraints.Comment: 14 pages, 3 encapsulated eps figures. To appear in Journal of Modern Optics, Special Proceedings Volume of the XXXIV Winter Colloquium on the Physics of Quantum Electronics, Snowbird, Jan 200

    Statistical mechanics of Floquet systems with regular and chaotic states

    Full text link
    We investigate the asymptotic state of time-periodic quantum systems with regular and chaotic Floquet states weakly coupled to a heat bath. The asymptotic occupation probabilities of these two types of states follow fundamentally different distributions. Among regular states the probability decreases from the state in the center of a regular island to the outermost state by orders of magnitude, while chaotic states have almost equal probabilities. We derive an analytical expression for the occupations of regular states of kicked systems, which depends on the winding numbers of the regular tori and the parameters temperature and driving frequency. For a constant winding number within a regular island it simplifies to Boltzmann-like weights \exp(-\betaeff \Ereg_m), similar to time-independent systems. For this we introduce the regular energies \Ereg_m of the quantizing tori and an effective winding-number-dependent temperature 1/\betaeff, different from the actual bath temperature. Furthermore, the occupations of other typical Floquet states in a mixed phase space are studied, i.e. regular states on nonlinear resonances, beach states, and hierarchical states, giving rise to distinct features in the occupation distribution. Avoided crossings involving a regular state lead to drastic consequences for the entire set of occupations. We introduce a simplified rate model whose analytical solutions describe the occupations quite accurately.Comment: 18 pages, 11 figure

    Coherent Control of Quantum Chaotic Diffusion

    Full text link
    Extensive coherent control over quantum chaotic diffusion using the kicked rotor model is demonstrated and its origin in deviations from random matrix theory is identified. Further, the extent of control in the presence of external decoherence is established. The results are relevant to both areas of quantum chaos and coherent control.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    A Selective Advantage for Conservative Viruses

    Full text link
    In this letter we study the full semi-conservative treatment of a model for the co-evolution of a virus and an adaptive immune system. Regions of viability are calculated for both conservatively and semi-conservatively replicating viruses interacting with a realistic semi-conservatively replicating immune system. The conservative virus is found to have a selective advantage in the form of an ability to survive in regions with a wider range of mutation rates than its semi-conservative counterpart. This may help explain the existence of a rich range of viruses with conservatively replicating genomes, a trait which is found nowhere else in nature.Comment: 4 pages, 2 figure

    Overlapping resonances in the control of intramolecular vibrational redistribution

    Get PDF
    Coherent control of bound state processes via the interfering overlapping resonances scenario [Christopher et al., J. Chem. Phys. 123, 064313 (2006)] is developed to control intramolecular vibrational redistribution (IVR). The approach is applied to the flow of population between bonds in a model of chaotic OCS vibrational dynamics, showing the ability to significantly alter the extent and rate of IVR by varying quantum interference contributions.Comment: 10 pages, 7 figure

    Aspects of quantum coherence in the optical Bloch equations

    Full text link
    Aspects of coherence and decoherence are analyzed within the optical Bloch equations. By rewriting the analytic solution in an alternate form, we are able to emphasize a number of unusual features: (a) despite the Markovian nature of the bath, coherence at long times can be retained; (b) the long-time asymptotic degree of coherence in the system is intertwined with the asymptotic difference in level populations; (c) the traditional population-relaxation and decoherence times, T1T_1 and T2T_2, lose their meaning when the system is in the presence of an external field, and are replaced by more general overall timescales; (d) increasing the field strength, quantified by the Rabi frequency, Ω\Omega, increases the rate of decoherence rather than reducing it, as one might expect; and (e) maximum asymptotic coherence is reached when the system parameters satisfy Ω2=1/(T1T2)\Omega^2 = 1/(T_1 T_2).Comment: 18 pages, 6 figures; to appear in J Chem Phy
    • …
    corecore